What is MOC?

- Match on Card (MOC) is the process of sending a biometric template from a live capture device to the card.
- The card processor receives the biometric template and matches it to the reference biometric template stored on the card.

Advantages of MOC:
- Compatible with FIPS201, 140-2 certified cards.
- Addresses privacy concerns.
- Can be an element of increased security.
- Fast, accurate, and interoperable.
- Match-on-Card is available today.
Why Consider MOC?

- Replace need for PIN in FIPS 201
 - Operational environments where PIN is cumbersome
 - PIN can be compromised

- How does MOC help
 - MOC provides non-repudiation and highly accurate means of authenticating card holder to card
 - MOC would perform the same function of PIN, unlocking PII data on PIV card
MINEX 2 and MOC

- February 2007 DHS sponsored demonstration of Match On Card to NIST FIPS 201, MINEX and TWIC program management.
 - Execution of Match On Card as a separate application on a certified FIPS201 card implemented using a GSA APL certified PACS reader
 - MOC with card authentication and full CHUID read were demonstrated
MINEX 2 and MOC

- The demonstration resulted in a NIST feasibility study of match on card technology with secure messaging and MINEX 2
 - MOC with secure messaging focused on speed of match when using encryption to protect the live biometric template sent to the card for matching
 - MINEX 2 focused on performance accuracy and interoperability
Why Conduct a Feasibility Study?

- Recognition that FIPS201 does not address the wide use of contactless technology in the PACS environment

- MOC executed under secure messaging could be a solution to provide security for PII passed across the contactless interface

 - If speed and accuracy requirements are not compromised

 - If interoperability is maintained
SBMOC Process

- The cardholder presents their card to a contactless biometric reader.
- The cardholder presents their finger to the biometric scanner.
- The host establishes a secure session with the card.
- The host prepares an encrypted template containing the fingerprint (image or minutia) and transmits it via contactless interface to the card.

* Reference NISTIR 7453
NIST Published Results - SBMOC

SBMOC Process

• The card decrypts the template and compares it with the reference template stored on the card

• The card returns signed result (i.e., Yes/No) to the host

• 4 card vendors participated and all vendors were able to perform biometric match on card using secure messaging in 2.5 seconds or less with a 1% or better error rate

* Reference: NISTIR - 7453
NIST Published Results - BMOC

BMOC Process

- Fips 201 certifiable card with reference template generated from one of 19 certified MINEX I vendors in ISOC/IEC 19794-2 compact card format- vendor A

- MOC Matcher is selected by provider of card stock, compares ISO/IEC 19794-2 COMPACT CARD instances.

- Verification generator from reader manufacturer, C. It would extract INCITS 378 data from fingerprint image and convert to ISO/IEC 19794-2 COMPACT CARD

* Reference NISTIR 7477
Only one MOC implementation achieved the minimum error rate specifications of the PIV program, Sagem Morpho.

The most accurate implementation, Sagem Morpho, was more accurate at FMR = 0.0001 than the next best matcher at FMR = 0.01.

Sagem Morpho MOC matcher was the only one to meet the FNMR required for PIV for all 19 MINEX I certified template generators.

NIST data reports that all participating vendors’ MOC algorithms performed best when matching against a reference template generated by the Sagem Morpho algorithm as compared to using a reference template from the other 19 MINEX I certified template generators.

* Reference NISTIR 7477
Conclusions

- Secure messaging has application for FIPS201 PACS implementation in supplying a secure means to pass PII data across the contactless interface.

- One vendor has proven that MOC algorithms are as accurate as match off card algorithms with strong interoperability.

- MINEX II is continuing and there is no doubt other vendors will improve the accuracy of their MOC algorithms.
Consuelo Bangs
Cell: 703 786-7971
Voice: 703 797-2665
E-mail: consuelo.bangs@morpho.com