Contactless Payments Chip Design
CTST 2009 – New Orleans, LA

Manuel Albers
Director, Business Development & Sales North America
BU A&I – Sales & Marketing - Identification
May 6th, 2009
Agenda

1. NXP Semiconductors
2. Setting The Stage
3. Secure Chip Design
4. Secure Chip Environment
5. Secure Chip Evaluation and Certification
6. Conclusion
Company Profile

- **President & CEO:** Rick Clemmer
- **Headquarters:** Eindhoven, The Netherlands
- **Net sales:** $5.4 billion in 2008 *
- Established in 2006 (formerly a division of Philips)
- 50+ years of experience in semiconductors

Leadership positions in contactless & security

- **Banking solutions**
 - Supplied >500 million banking cards in 35 countries
- **eGovernment solutions**
 - Supplying 80% of ePassport projects worldwide
- **Public Transportation**
 - Mifare is used in >70% of the global transport infrastructure
- **NFC solution**
 - Creator of NFC technology together with Sony
 - NXP products used in about 100 NFC trials worldwide

*) These figures include the Mobile & Personal business which was largely part of the ST-NXP Wireless JV in 2008

Source: ABI Research, 2008
Agenda

1. NXP Semiconductors
2. Setting The Stage
3. Secure Chip Design
4. Secure Chip Environment
5. Secure Chip Evaluation and Certification
6. Conclusion
Setting the stage

Contactless Payment Chip Design - Objective

To meet or beat the customer’s requirements in the application in terms of

- **Performance**
 - Typically defined in the application specification
 - Analog!

- **Security**
 - Typically defined by the (end-) customer
 - Often referencing standardized or non-standardized security criteria

- **Reliability**
 - Supply
 - Reputation

- **Cost**
 - Competitiveness
Product Security Assessment

General Approach

- **Product**
 To meet the customer’s security requirements in the final application.

- **Production Flow**
 To prevent/detect loss or manipulation of the security product.

- **Shipment**
 To prevent/detect loss or manipulation of security product.

- **Site Security**
 - **Physical Security**
 To prevent unauthorized access to security data, products and facilities
 - **Logical (IT) Security**
 To prevent loss of confidentiality and integrity of security objects/data
Product Security Evaluation & Certification

General Aspects

Security is defined as a state free from unacceptable risk.

To obtain a Security Certificate for a Security Product (Chip), the evaluation comprises the following aspects.

- Chip related
 - Evaluation of the design (including source code)
 - Tests to verify the design
 - Vulnerability Assessment

- Chip environment related
 - Evaluation Audit of the Configuration Management
 - Evaluation Audits of the development environment at the concerned sites
 - Evaluation Audits of the production environment over the entire supply chain
Agenda

1. NXP Semiconductors
2. Setting The Stage
3. Secure Chip Design
4. Secure Chip Environment
5. Secure Chip Evaluation and Certification
6. Conclusion
The Battleground

National Security Agencies

Security Evaluation Laboratories

Payment Associations, Financial Institutions, Standardization Bodies

Influence

Attack

Scare

Control

Trust

Attack

Trust
Introduction – Smartcard-based Systems

- **The security of a system is a holistic property**
 - A system usually consists of many components, all of which contribute.
 - The system is only as strong as its weakest link.

- **Light-weight card systems**
 - Are based on relatively cheap cards (e.g. simple ASICs or standard OTS [Off-The-Shelf] CPUs), and a very strong back-end system.
 - Typically used when the number of (to be) deployed consumables is very large (e.g., Public Transport).

- **Heavy-weight card systems**
 - Are based on more expensive, highly secure cards (containing a dedicated high-security CPU core and crypto coprocessors) that “can survive on their own” for a long time in a hostile environment.
 - Typically used when the number of cards is not so large, or no back-channel exists (e.g., Banking, Access Control, eGovernment, Pay-TV).
 - Typically certified with Common Criteria at EAL 4+, EAL 5, or EAL5+
Security Roadmap

Attacks on Smart Cards

- Combined Attacks: power analysis & light attacks, ...
- Fault Attacks: (glitch) & light attacks, differential fault attacks on crypto algorithms, ...
- Information Leakage Attacks: side-channel attacks, timing analysis, power analysis, EM - analysis of millions of traces, ...
- Invasive Attacks: reverse engineering, probing, forcing, manipulation, ...
- EAL 3
- EAL 5+
- JHAS (chair: NXP)
 JIL Hardware Attack Subgroup – for CC
- Common Criteria EAL 5+, VISA, CAST, EMVCo, ZKA, FIPS 140-2,...
 independent 3rd party evaluations

NXP worldwide first to achieve

JHAS group in CC Scheme – ~30 Members
Security Roadmap

Evolution of Defences

Basic Security
- Short-key ciphers

Confidentiality (data)
- memory scrambling
- passive shields
- IC hardened against reverse engineering
- dedicated CPU, glue logic
- side-channel-attack resistance

Confidentiality & Integrity (data)
- die-individual memory encryption
- active shields
- analogue tampering / fault detection sensors

Confidentiality & Integrity (code & data)
- SecureFetch for securely fetching data & opcode
- digital tampering / fault detection sensors
- error / attack logging & kill-IC mechanisms

Simple ASICs
- SmartMX
- Fast Pay
- DESFire EV1
- MIFARE Plus

complexity

time
NXP comprehensive Security Concept

More than 100 unique security features harden the SmartMX.

Licensed Countermeasures against Differential Power Analysis (DPA).

Proven by third party security assessments and type approvals:

EMVC\textit{Co} security evaluation
CAST
VISA
Common Criteria EAL5+
ZKA
Approval for German Signature Card
Agenda

1. NXP Semiconductors
2. Setting The Stage
3. Secure Chip Design
4. Secure Chip Environment
5. Secure Chip Evaluation and Certification
6. Conclusion
Security Management System

Secure Chip Environment

- Implementation of a Security Management System (SMS) minimizes the (unacceptable) risks of
 - Breach of Confidentiality (i.e. information leakage)
 - Integrity (i.e. manipulation of information)
 - Misuse (of information and resources)
 - Economic damages
 - Damage to Reputation

and supports a close, auditable relationship between Chip Maker, Suppliers, and (End-) Customers.
Security Management System (SMS)

General Requirement

- SMS Implementation throughout the entire development and production process
- Security Policy - Management Team Commitment and assigned responsibilities
- SMS Documentation as integrated part of the Quality System Documentation
- Sufficiency and effectiveness of the SMS need to be checked periodically by 3rd party evaluation site visits.
 - The SMS can e.g. follow security assurance requirements according to Common Criteria (ISO15408)
Agenda

1. NXP Semiconductors
2. Setting The Stage
3. Secure Chip Design
4. Secure Chip Environment
5. Secure Chip Evaluation and Certification
6. Conclusion
Security Evaluation

Current situation

- Different requirements for different applications
 - Common Criteria
 - German Sig. Law, Passport, Healthcard, Tachograph
 - French banking applications or health card
 - Market driven criteria (banking applications)
 - VISA / MC (CAST) / JCB
 - EMVCo
 - ZKA
 - FIPS 140-2
 - E.g. US Government requirements
 - MULTOS

- Several evaluations of the same HW
 - Time consuming, expensive
Security Evaluation

Security Evaluation Criteria

- Standardized Criteria
 - Common Criteria (ISO 15408)
 - FIPS 140-x

- Non-standardized (proprietary) Criteria
 - AMEX
 - VISA
 - CAST
 - JCB

EMVCo approval = H/W approval, Basis for Type Approval
Relevant Formal Card Testing Processes

Example: MasterCard & Visa Type Approval

- **Pre-requisite:** EMVCo. (H/W) Approval

- **MasterCard**
 - Analog Interface Testing
 - Electro-magnetic behavior
 - Digital and Application Testing
 - Performance Testing
 - Combination Testing
 - Card – Reader interaction
 - Card Quality Management
 - Audit of the manufacturing site(s)
 - Compliance Assessment & Security Testing (CAST)
 - Security evaluation of the chip, the OS, and the application

- **Visa**
 - Chip Hardware Security Evaluation Process
 - Not applicable for MSD 1.4.2
 - Functional Testing
 - Analog and Digital Testing
 - magnetic field characteristics
 - timing, anti collision, and protocol
 - Application and/ or Visa GlobalPlatform Testing
 - Risk Testing
 - Security evaluation of the chip, the OS, and the application
Agenda

1. NXP Semiconductors
2. Setting The Stage
3. Secure Chip Design
4. Secure Chip Environment
5. Secure Chip Evaluation and Certification
6. Conclusion
Conclusion

- Design of a (secure) Contactless Payment Chip is a very **involved** and **resource-intensive** process.

- Time to market and cost of security evaluations and certifications will continue to drive the **consolidation of non-standard security criteria** to standard security criteria such as Common Criteria.

- Chip Security is a moving target (a race). Market participants contribute to constantly raising the bar for secure chip design. Continuous investments into both **Secure Chip Design Processes** and a holistic **Security Management System** have proven to be a successful and sustainable approach.
Thank You for your attention!

Q & A

manuel.albers@nxp.com
(C) +1 (401) 359-4999